Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In 2022, 3 years after the initial 5G rollout, through a cross-country US driving trip (from Los Angeles to Boston), the authors of [28] conducted an in-depth measurement study of user-perceived experience (network coverage, performance, and QoE of a set of major 5G “killer” apps) over all three major US carriers. The study revealed disappointingly low 5G coverage and suboptimal network performance – falling short of the expectations needed to support the new generation of 5G "killer apps. Now, five years into the 5G era, widely considered its midlife, 5G networks are expected to deliver stable and mature performance. In this work, we replicate the 2022 study along the same coast-to-coast route, evaluating the current state of cellular coverage and network and application performance across all three major US operators. While we observe a substantial increase in 5G coverage and a corresponding boost in network performance, two out of three operators still exhibit less than 50% 5G coverage along the driving route even five years after the initial 5G rollout. We expand the scope of the previous work by analyzing key lower-layer KPIs that directly influence the network performance. Finally, we introduce a head-to-head comparison with Starlink’s LEO satellite network to assess whether emerging non-terrestrial networks (NTNs) can complement the terrestrial cellular infrastructure in the next generation of wireless connectivity.more » « lessFree, publicly-accessible full text available July 28, 2026
-
Free, publicly-accessible full text available February 26, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
This paper assesses trending AI foundation models, especially emerging computer vision foundation models and their performance in natural landscape feature segmentation. While the term foundation model has quickly garnered interest from the geospatial domain, its definition remains vague. Hence, this paper will first introduce AI foundation models and their defining characteristics. Built upon the tremendous success achieved by Large Language Models (LLMs) as the foundation models for language tasks, this paper discusses the challenges of building foundation models for geospatial artificial intelligence (GeoAI) vision tasks. To evaluate the performance of large AI vision models, especially Meta’s Segment Anything Model (SAM), we implemented different instance segmentation pipelines that minimize the changes to SAM to leverage its power as a foundation model. A series of prompt strategies were developed to test SAM’s performance regarding its theoretical upper bound of predictive accuracy, zero-shot performance, and domain adaptability through fine-tuning. The analysis used two permafrost feature datasets, ice-wedge polygons and retrogressive thaw slumps because (1) these landform features are more challenging to segment than man-made features due to their complicated formation mechanisms, diverse forms, and vague boundaries; (2) their presence and changes are important indicators for Arctic warming and climate change. The results show that although promising, SAM still has room for improvement to support AI-augmented terrain mapping. The spatial and domain generalizability of this finding is further validated using a more general dataset EuroCrops for agricultural field mapping. Finally, we discuss future research directions that strengthen SAM’s applicability in challenging geospatial domains.more » « less
An official website of the United States government
